
Determining computational resource needs
Documenting your code’s performance and scalability to demonstrate that your stated resource needs are reasonable is an important aspect of
preparing an allocation request.

These guidelines are intended to help you gather and present the data you need to support your request. Ultimately, you will complete a table like the
one shown here to include in your application. With accompanying narrative that describes each experiment or experimental configuration, it will
communicate clearly to reviewers what computing resources you need and how you will use those resources.

Page contents

CESM and WRF
Community Earth System Model
Weather Research and Forecasting Model

Other codes and models
Strong vs. weak scaling
Reporting on performance

You can use a chart like this as a starting point. Review the documentation for the relevant to learn what else is required.allocation opportunity

Experiment
(Experimental configuration)

Core-hours per simulation Number of simulations Total core-hours

Totals

CESM and WRF

Community Earth System Model

In the case of , see th rovided by the CESM team at NCAR for information that will help you develop a statement of resource CESM e timing tables p
requirements for your project.

The computational cost of CESM experiments typically is expressed in core-hours (also known as processor element-hours or "pe-hrs") per simulated
year, so the “Cost pe-hrs/yr” column (the cost in core-hours for each simulated year) provides the necessary value needed to calculate the cost of a
simulation; you provide the number of years.

Your allocation request should show that the number of years proposed and the model resolution chosen are sufficient and necessary to answer your
scientific question(s).

Weather Research and Forecasting Model

For projects, review the guidance on our page. Follow those recommendations as you do some benchmark runs WRF Optimizing WRF performance
to estimate the number of core-hours you will need for each planned simulation. Cite that page in your core-hour request and describe for the review
panel how you estimated your resource requirements.

Estimating Derecho allocation needs

Derecho users can expect to see a 1.3x improvement over the Cheyenne system's performance on a core-for-core basis. Therefore, to estimate
how many CPU core-hours will be needed for a project on Derecho, multiply the total for a Cheyenne project by 0.77.

When requesting an allocation for Derecho GPU nodes, please make your request in terms of GPU-hours (number of GPUs used x wallclock
hours). We encourage researchers to estimate GPU-hour needs by making test/benchmark runs on Casper GPUs, but will accept estimates
based on runs on comparable non-NCAR, GPU-based systems.

https://kb.ucar.edu/display/RC/Allocations
https://csegweb.cgd.ucar.edu/timing/cgi-bin/timings.cgi
https://kb.ucar.edu/display/RC/Optimizing+WRF+performance

Other codes and models

Proposed experiments may be different enough from the documented CESM and WRF simulations that you need to run your code several times to
determine how many core-hours you’ll need. If you are using other codes or models that do not have well-known or published performance
information, you will need to document the performance and scalability of your codes to complete your resource request. (A reference to a web site or
paper with performance and scalability details for the code or model is acceptable for purposes of an allocation request.)

Presumably you’ve run your code on a multi-core system and have at least a general idea of what resources you will need in order to run at the same
scale or larger on the Cheyenne or Casper systems.

To begin fine-tuning your general idea into a specific request for resources, consider these questions:

How large is any data set that you need to load?
How much memory needs to be available for you to complete a run? (The can tell you how much memory your peak_memusage tool
program uses.)

Your answers will help you calculate the minimum number of nodes you can use.

Memory needed / memory per node = minimum nodes

That minimum number of nodes can serve as your starting point unless you already know that a larger number will work. You may need anything from
a few dozen to hundreds or thousands of cores.

Document your code’s performance with test runs on the Cheyenne system if possible, or on a reasonably similar platform and software stack. You
will want to illustrate in a graph that your code performs well at increasingly higher scale, showing indicating the results of your at least four points
runs (as in Figure 1).

If your application’s performance is not already well documented, you may need to establish a baseline by running it on a single node before scaling.
On Cheyenne, your parallel code would be executed on a total of 36 cores on a single node or the equivalent of 72 cores with .hyper-threading support
From that baseline, you can generate scaling data by making a series of runs on progressively greater numbers of nodes to determine the optimum
number to use.

Start by documenting the smallest run that you know will work. For example, say you’ve run your parallel code on a similar system using 4,000 cores,
or you’ve had an opportunity to do some similar-size test runs on Cheyenne. Do additional larger runs to demonstrate that the code scales as you
expect it to scale. To ensure accuracy, it can help to do several runs at each point on different days to detect variations that might result from changes
in the machine’s workload.

https://kb.ucar.edu/display/RC/Checking+memory+use
https://kb.ucar.edu/display/RC/Hyper-threading+on+Cheyenne

Based on the hypothetical results shown in Figure 1, a run could be done efficiently using 1,000 cores. The job would finish more quickly, using less
wall-clock time, than it would using 400 cores.

To convert that into total core-hours needed for one type of simulation, multiply core-hours per simulation (the time needed to complete one simulation
times the number of cores used) by the number of times you are proposing to run that type of simulation.

Core-hours per simulation x total simulations = total core-hours

That gives you the information you need to fill out one row of your table. Repeat the process for each type of simulation, then add the figures in the
last column to get the overall core-hour total.

Strong vs. weak scaling

As you do your test runs, keep in mind that strong scaling – the degree to which performance improves as more processors are applied to a fixed
 – is more useful for these purposes than weak scaling, which reflects the ability to solve larger problem sizes with more processors. problem size

Strong scaling will reflect the improvement in speed (resulting in reduced overall run time) as more processors are used.

At some point, using more processors is likely to have little additional benefit, because the potential for increasing speed is limited by the ratio of serial
to parallel code in the application. Figure 2 reflects such a scenario, which shows little or no performance benefit from using more than 5,000 cores. If
you identify such a point in your test runs, it would make little sense to base your allocation request on higher numbers of cores.

Reporting on performance

When submitting your allocation request, provide documentation on how you generated your scaling data. Include a graph similar to those shown here
to illustrate the results.

Describe how flexible your code is regarding the number of processors it can use and why you chose a certain number on which to base your request.
It also is helpful to include information on the portability of the code to other platforms and on your team’s knowledge and experience with systems
that are similar to Cheyenne.

Use these links to download sample proposals:

Example proposal 1
Example proposal 2

They are specific to large university allocations but are good examples of documenting performance that you can follow for other types of requests.

https://kb.ucar.edu/download/attachments/75694337/Example_Proposal_1_Spring2020%20%281%29.pdf?version=1&modificationDate=1627489242000&api=v2
https://kb.ucar.edu/download/attachments/75694337/Example_Proposal_2_Fall2019%20%281%29.pdf?version=1&modificationDate=1627489279000&api=v2

	Determining computational resource needs

