
Starting Casper jobs with PBS
This documentation describes how to use PBS Pro to submit jobs to run on nodes in the Casper cluster. Unless GPUs are required, run jobs that require
the use of more than one compute node on Cheyenne.

Procedures for starting both and on Casper are described below. Also: interactive jobs batch jobs

Compile your code on Casper nodes if you will run it on Casper.
See to learn how core-hours charges are calculated for jobs that run on Casper. Calculating charges

Begin by logging in on Casper (casper.ucar.edu) or Cheyenne (cheyenne.ucar.edu).

Page contents

Interactive jobs
Starting a remote command shell with execcasper
Starting a virtual desktop with vncmgr

Batch jobs
Specifying resource requests with select statements

GPU development jobs
Concurrent resource limits
NVMe node-local storage
Script examples

For bash users
For tcsh users

Compiling your code

Interactive jobs

Starting a remote command shell with execcasper

Run the command to start an interactive job. Invoking it will start an interactive shell on the . The execcasper without an argument first available HTC node
default wall-clock time is 6 hours.

To use another type of node, include a specifying the resources you need. The command accepts all PBS flags and select statement execcasper
resource specifications as detailed by . Some common requests include: man qsub

-A project_code (defaults to DAV_PROJECT value that you set in your start file)
-l walltime=HH:MM:SS (defaults to 6 hours)
-l select=1:ncpus=#:mpiprocs=#:ompthreads=#:mem=#GB:ngpus=#:cpu_type=skylake
(or cascadelake)
-l gpu_type=gp100 (or v100)
-q gpudev (This will direct your interactive job to the "gpudev" queue rather than the default "casper" submission queue.)

Additionally, execcasper provides some convenience flags to simplify requesting job resources. If you specify a select statement as described above, it will
take precedence over these flags.

--nchunks=# - number of chunks specified in a select statement (e.g., select=<numchunks>)
--ntasks=# - number of MPI tasks assigned to each chunk (mpiprocs)
--nthreads=# - number of SMP threads assigned to each chunk (ompthreads)
--mem=#GB - amount of memory in gigabytes assigned to each chunk
--ngpus=# - number of GPUs assigned to each chunk
--gpu=<type> to specify the gpu_type resource
--cpu=<type> to specify the cpu_type resource

The following execcasper invocations, the first with a select statement and the second with a memory flag, are equivalent.

execcasper -A PROJ0001 -l select=1:ncpus=1:mem=20GB
execcasper -A PROJ0001 --mem=20GB

If you do not include a resource specification by using either a select statement or convenience flags, you will be assigned 1 CPU with 10 GB of memory
and no GPUs.

If no project is assigned with either the option or the environment variable, any valid project listed for your username will be chosen at -A DAV_PROJECT
random.

Wall-clock

The wall-clock limit on the Casper cluster is 24 hours except as noted below.

Specify the hours your job needs as in the examples below. Use either the format or .hours:minutes:seconds minutes:seconds

https://kb.ucar.edu/display/RC/Job-submission+queues+and+charges

Starting a virtual desktop with vncmgr

If your work with complex programs such as MATLAB and VAPOR requires the use of virtual network computing (VNC) server and client software, use vnc
instead of .mgr execcasper

Using simplifies configuring and running a VNC session in a Casper batch job. How to do that is . vncmgr documented here

Batch jobs

Prepare a batch script by following one of the examples . Most Casper batch jobs use the "casper" queue. The exception is for GPU below submission
development jobs, which are submitted to the "gpudev" submission queue.

Be aware that the system import your login environment by default, so make sure your script loads the software modules that you will need to does not
run the job.

Caution: Avoid using the PBS option to propagate your environment settings to the batch job; it can cause odd behaviors and job failures when -V
used in submissions to Casper from Cheyenne. If you need to forward certain environment variables to your job, use the lower-case option to -v
specify them. (See for details.) man qsub

When your job script is ready, use to submit it from the Casper login nodes. qsub

Examples:

qsub script_name
 or
qsubcasper script_name

See or other commonly used PBS commands. Managing and monitoring jobs f

Specifying resource requests with select statements

Users can request certain resources from PBS via a select statement. This syntax allows you to request any number of resource , which will include chunks
one or more CPUs, and optionally MPI tasks, Open MP threads, GPUs, custom amounts of node memory, and nodes with a certain CPU type. The
general format of a select statement is:

#PBS -l select=<numchunks>:ncpus=#:<optional>=#...

Additionally, the types of GPUs assigned to the job can be constrained by an additional flag, as in this example:

#PBS -l gpu_type=gp100

Minimizing your use of resource specifications reduces the length of time your job waits in the queue. In general, ask for the smallest amount of each
resource required to perform your task in a timely manner. Also, study the node table on the to avoid requesting resource combinations main Casper page
that are not possible. For example, a job submission requesting both gp100s and Cascade Lake processors will sit in the queue indefinitely because the
system does not offer that configuration.

Two types of GPUs are available:

NVIDIA Tesla V100 GPUs for intensive GPGPU computing and machine learning/deep learning; a feature called limits the use of a GPU isolation
particular GPU to a single user
NVIDIA Quadro GP100 GPUs for visualization and light GPGPU workloads

GPU development jobs

A submission queue called "gpudev" is available between 8 a.m. and 5:30 p.m. Mountain time Monday to Friday to support application development and
debugging efforts on general purpose and ML/AI GPU applications. , avoiding the sometimes This queue provides rapid access to up to 4 V100 GPUs
lengthy queue wait times in the "gpgpu" execution queue.

Job submissions to this queue are limited to 30 minutes walltime instead of the 24-hour wallclock limit for all other submissions. All jobs submitted to the
 must request one or more V100 GPUs (up to four) in their resource directives. Node memory can be specified explicitly as usual, but by default queue

jobs will be assigned N/4 of the total memory on a node, where N is the number of V100 GPUs requested.

Concurrent resource limits

https://kb.ucar.edu/display/RC/Using+remote+desktops+on+Casper+with+VNC
https://kb.ucar.edu/display/RC/Managing+and+monitoring+PBS+jobs
https://kb.ucar.edu/display/RC/Casper+cluster

Job limits are in place to ensure short dispatch times and a fair distribution of system resources. The specific limits that apply to your submission depend
on the resources requested by your job. Based on your request, your submission will be classified as shown in the table.

Submission
queue

Job category
(execution queue)

Job resource
requests

Limits

casper
24-hour
wallclock limit

largemem mem > 361 GB
ncpus <= 36
ngpus = 0

Up to 5 jobs eligible for execution at any one time (more can be queued)

htc mem <= 361 GB
ncpus <= 144
ngpus = 0

Up to 468 CPUs in use per user at any one time
Up to 4680 GB memory per user at any one time
(across all jobs in category)

vis gpu_type=gp100 Up to 2 GPUs in use per user at any one time
Individual jobs are limited to a single gp100 (no multi-GPU jobs)

gpgpu gpu_type=v100 Up to 32 GPUs in use per user at any one time; users may submit jobs requesting more than 32
GPUs for execution on weekends.

gpudev
30-minute
wallclock limit

ncpus <= 36
1 <= ngpus <= 4

Queue is only operational from 8 a.m. to 5:30 p.m. Mountain time, Monday to Friday. Users may have
only one active job in the queue at any time.

NVMe node-local storage

Casper nodes each have 2 TB of local NVMe solid-state disk (SSD) storage. Some is used to augment memory to reduce the likelihood of jobs failing
because of excessive memory use.

NVMe storage can also be used . (Recommended only for I/O-intensive jobs.) Data stored in are while a job is running /local_scratch/pbs.$PBS_JOBID
deleted when the job ends.

To use this disk space while your job is running, include the following in your batch script after customizing as needed.

Copy input data to NVMe (can check that it fits first using "df -h")
cp -r /glade/scratch/$USER/input_data /local_scratch/pbs.$PBS_JOBID

Run script to process data (NCL example takes input and output paths as command line arguments)
ncl proc_data.ncl /local_scratch/pbs.$PBS_JOBID/input_data /local_scratch/pbs.$PBS_JOBID/output_data

Move output data before the job ends and your output is deleted
mv /local_scratch/pbs.$PBS_JOBID/output_data /glade/scratch/$USER/

Script examples

The examples below show how to create a script for running a job. Such jobs typically use only a few CPU cores and high-throughput computing (HTC)
likely do not require the use of an MPI library or GPU.

See this page for more script examples: Casper job script examples

For bash users

Insert your own project code where indicated and customize other settings as needed for your own job.

https://kb.ucar.edu/display/RC/Casper+job+script+examples

#!/bin/bash -l
Job Name
#PBS -N htc_job
Charging account
#PBS -A project_code
Request one chunk of resources with 1 CPU and 10 GB of memory
#PBS -l select=1:ncpus=1:mem=10GB
Allow job to run up to 30 minutes
#PBS -l walltime=30:00
Route the job to the casper queue
#PBS -q casper
Join output and error streams into single file
#PBS -j oe

export TMPDIR=/glade/scratch/$USER/temp
mkdir -p $TMPDIR

Load Python module and activate NPL environment
module load ncarenv python
ncar_pylib

Run analysis script
python myscript.py datafile.dat

For tcsh users

Insert your own project code where indicated and customize other settings as needed for your own job.

You may see this harmless warning at the start of your PBS batch job output logs on Casper:

Warning: no access to tty (Bad file descriptor). Thus no job control in this shell.

It simply means terminal interaction via is not possible because the script is being run in a batch environment. If you need to provide input via stdin, stdin
use to launch an interactive session instead of running a batch job. execcasper

#!/bin/tcsh
Job Name
#PBS -N htc_job
Charging account
#PBS -A project_code
Request one chunk of resources with 1 CPU and 10 GB of memory
#PBS -l select=1:ncpus=1:mem=10GB
Allow job to run up to 30 minutes
#PBS -l walltime=30:00
Route the job to the casper queue
#PBS -q casper
Join output and error streams into single file
#PBS -j oe

setenv TMPDIR /glade/scratch/$USER/temp
mkdir -p $TMPDIR

Load Python module and activate NPL environment
module load ncarenv python
ncar_pylib

Run analysis script
python myscript.py datafile.dat

Compiling your code

CISL recommends using the for parallel programs, and compiling on a Skylake node unless the code will run default Intel, GNU or PGI compilers
exclusively on Cascade Lake nodes.

Load the compiler.
Load the module if you plan to use MPI. openmpi
Compile your code as you usually do.

Serial programs can use any compiler.

	Starting Casper jobs with PBS

