
Compiling code
Cheyenne and Casper users have access to Intel, NVIDIA/PGI, and GNU compilers. The is loaded by default, which makes Intel compiler module
som vailable by default as well.e Intel tools a

Page contents

Compiler commands
GPU compilers
Changing compilers
Where to compile
Native commands

Compiler commands

After loading the compiler module that you want to use, identify and run the appropriate compilation wrapper command from the table below. (If your
script already includes one of the following generic MPI commands, there is no need to change it: mpif90, mpif77, ftn; mpicc, cc; mpiCC and CC.)

Also consider using the compiler' o identify potential problems.s diagnostic flags t

Any libraries you build to support an application should be built with the same compiler, compiler version, and compatible flags that were used to
compile the other parts of the application, including the main executable(s). Also, when you run the applications, be sure you have loaded the same mo

n which you created the applications. This will avoid job failures that can result from missing mpi launchers and library dule/version environment i
routines.

Compiler man pages

To get the page for a compiler, log in to the system where you intend to use it, load the module, then execute for the compiler. man man

module load nvhpc
man nvfortran

Compiler Language Commands for serial programs Commands for programs
using MPI

Flags to enable OpenMP
(for serial and MPI)

Intel (default) Fortran ifort foo.f90 mpif90 foo.f90 -qopenmp

C icc foo.c mpicc foo.c -qopenmp

C++ icpc foo.C mpicxx foo.C -qopenmp

Include these flags for best performance when you use the Intel compiler:
-march=corei7 -axCORE-AVX2

NVIDIA HPC Fortran nvfortran foo.f90 mpif90 foo.f90 -mp

C nvc foo.c mpicc foo.c -mp

C++ nvc++ foo.C mpicxx foo.C -mp

GNU
(GCC)

Fortran gfortran foo.f90 mpif90 foo.f90 -fopenmp

C gcc foo.c mpicc foo.c -fopenmp

C++ g++ foo.C mpicxx foo.C -fopenmp

PGI Fortran pgfortran (or pgf90 or pgf95) foo.f90 mpif90 foo.f90 -mp

C pgcc foo.c mpicc foo.c -mp

C++ pgcpp (or pgCC) foo.C mpicxx foo.C -mp

The PGI compiler has become the NVIDIA HPC (nvhpc) compiler and all future versions will be released as such. PGI users should migrate to NVIDIA when
possible.

GPU compilers

2/2/2021: This documentation has been updated because of changes to the PGI compiler. It has become the NVIDIA HPC (nvhpc) compiler and
all future versions will be released as such. PGI users should migrate to NVIDIA when possible. The nvhpc compiler has no license limitations.

https://kb.ucar.edu/display/RC/Intel+Parallel+Studio+XE+tools
https://kb.ucar.edu/display/RC/Compiler+diagnostic+flags+for+Cheyenne+users
https://kb.ucar.edu/display/RC/Environment+modules+on+Cheyenne
https://kb.ucar.edu/display/RC/Environment+modules+on+Cheyenne

To compile CUDA code to run on the Casper data analysis and visualization nodes, use the appropriate NVIDIA compiler command:

nvc – NVIDIA C compiler
nvcc – NVIDIA CUDA compiler (Using nvcc requires a C compiler to be present in the background; nvc, icc, or gcc, for example.)
nvfortran – CUDA Fortran

For examples, see:

Compiling GPU code on Casper nodes
Compiling multi-GPU MPI-CUDA code on Casper

Changing compilers

Should you prefer to use a compiler other than the Intel default compiler, use to make the change. module swap

In this example, you are switching from Intel to NVIDIA:

module swap intel nvhpc

When you load a compiler module, the system makes other compatible modules available. This helps you establish a working environment and avoid
conflicts. If you need to link your program with a library*, use module load to load the library as in this example:

module load netcdf

Then, you can just invoke the desired compilation command without adding link options such as -l netcdf. Here's an example:

mpif90 foo.f90

You can learn more about how using modules helps you manage your environment on our Environment modules age.p

Where to compile

The use of different types of processors and operating systems in the Cheyenne environment makes your choice of where to compile your code
especially important.

System Processor

Cheyenne Intel Broadwell

Casper DAV nodes Intel Skylake (default)
Intel Cascade Lake

Cheyenne uses SUSE Enterprise Linux, while the Casper data analysis and visualization (DAV) nodes run CentOS. The different operating systems
provide different versions of some standard libraries, which may be incompatible with each othe o ensure your code will run r. Specify Skylake nodes t
on both Skylake and Cascade Lake nodes.

Even if you take care to build your programs for portability, you will achieve superior performance if you compile your code on the cluster where you
intend for it to run.

Compile on Cheyenne if…

You want to aggressively optimize CPU performance.
You will run your code only on Cheyenne.

You can compile your code in a batch job in the "economy" or "regular" queu not a login node) if needed.e using your login environment (

Compile on Casper if...

You want to ensure that your code will run on Casper nodes.
You want to use the latest CPU optimizations in Intel's Skylake or Cascade Lake architecture.
Your programs use GPU tools like OpenGL, CUDA, and OpenACC.

Native commands

https://kb.ucar.edu/display/RC/Compiling+GPU+code+on+Casper+nodes
https://kb.ucar.edu/display/RC/Compiling+multi-GPU+MPI-CUDA+code+on+Casper
https://kb.ucar.edu/display/RC/Environment+modules+on+Cheyenne

We recommend using the module wrapper commands described above. However, if you prefer to invoke the compilers directly, unload the NCAR
default compiler wrapper environment by entering this on your command line:

module unload ncarcompilers

You can still use the environment variables that are set by the modules that remain loaded, as shown in the following examples of invoking compilers
directly to compile a Fortran program.

Intel compiler

ifort -o a.out $NCAR_INC_<PROGRAM> program_name.f $NCAR_LDFLAGS_<PROGRAM> $NCAR_LIBS_<PROGRAM>

NVIDIA HPC compiler

nvfortran -o a.out $NCAR_INC_<PROGRAM> program_name.f $NCAR_LDFLAGS_<PROGRAM> $NCAR_LIBS_<PROGRAM>

GNU compiler collection (GCC)

gfortran -o a.out $NCAR_INC_<PROGRAM> program_name.f $NCAR_LDFLAGS_<PROGRAM> $NCAR_LIBS_<PROGRAM>

PGI compiler

pgfortran -o a.out $NCAR_INC_<PROGRAM> program_name.f $NCAR_LDFLAGS_<PROGRAM> $NCAR_LIBS_<PROGRAM>

To determine the correct name to substitute for <PROGRAM> in those commands, you can grep each of them as shown here.

env | grep NCAR_INC
env | grep NCAR_LDFLAGS
env | grep NCAR_LIBS

* In addition to multiple compilers, CISL keeps available multiple versions of libraries to accommodate a wide range of users' needs. Rather than rely
on the environment variable LD_LIBRARY_PATH to find the correct libraries dynamically, we encode library paths within the binaries when you build
Executable and Linkable Format (ELF) executables. To do this, we use RPATH rather than LD_LIBRARY_PATH to set the necessary paths to shared
libraries.

This enables your executable to work regardless of updates to new default versions of the various libraries; it doesn't have to search dynamically at
run time to load them. It also means you don't need to worry about setting the variable or loading another module, greatly reducing the likelihood of
runtime errors.

	Compiling code

