
Optimizing WRF performance
These recommendations for optimizing the performance of the Weather Research and Forecasting (WRF) modeling system are based on the results 
of numerous jobs that were run on the by the CISL Consulting Services Group. The jobs included small runs and others with a  Cheyenne system 
variety of domain sizes and time steps.

Page contents

Configuring and compiling
Run-time options
Scaling and core count

Configuring and compiling
CISL experiments showed that using the Intel compiler resulted in WRF model performance than using the GNU compiler. We  substantially better 
recommend using the latest Intel compiler and the compiler's default settings as contained in the WRF script. configure 

We recommend using the PathScale compiler to compile WRF. do not 

The script for creating the file has options for compiling WRF with some optimization flags that can potentially improve the model's  configure.wrf 
performance. These are the configure options in WRF 4.0. INTEL (ifort/icc): HSW/BDW 

Experiments showed that using for Intel and for the GNU compiler improved computation speed by approximately 10%. -fp-model fast = 2     -ofast 
These optimizations, however, may result in less precise computation results.

Users should compile WRF with Distributed-Memory Parallelism (DMPar) for builds with only MPI tasks. Depending on the individual case, advanced 
WRF users may find some improvement in performance with a hybrid build, using both DMPar and SMPar.

We recommend SMPar alone or serial WRF builds. do not 

Run-time options

Hyper-threading significantly reduced simulation performance in some tests performed with 144 and 2,304 cores.

Tests of hybrid MPI/OpenMP jobs, both with and without hyper-threading, showed that hybrid parallelism can provide performance  marginally higher 
than pure MPI parallelism.

Run-to-run variability was high, however, and performance could degrade easily if some secondary environment settings are changed. Therefore:

We recommend hybrid MPI/OpenMP jobs and hyper-threading only for advanced users who are trying to squeeze the very best performance 
out of their runs.
For others, we recommend pure MPI hyper-threading (that is, using 36 cores per node) as very easy to do, stable, and still providing  without 
good performance.

Processor binding was enabled by default when running MPI jobs on Cheyenne. We used the default binding settings provided by in  mpiexec_mpt 
test runs.

Scaling and core count

Computationally, WRF is and it can be run on extremely large core counts. The initialization, domain decomposition, and I/O, however, highly scalable   
and therefore can limit the largest reasonable number of cores for a job.do not scale as well 

See (particularly Figure 2) for details. WRF scaling and timing on Cheyenne 

https://kb.ucar.edu/display/RC/WRF+scaling+and+timing

	Optimizing WRF performance

