
Debugging and profiling with Forge tools on Derecho
The tools – which include , , and – are provided for debugging, profiling, and optimizing code. Forge Linaro Forge DDT MAP Performance Reports
tools can be used with Fortran, C, C++, and Python code, and both CPU and GPU code can be analyzed.

While Forge can be used with both serial and parallel applications, its real strength is in profiling large MPI codes that span many nodes – a task that
is very challenging with traditional debugging and profiling tools like gdb and gprof.

To get started, first configure the client interface on your local machine by following the recommended procedures below. This will allow you to begin
debugging and profiling jobs.

Page contents

Preparing your code on Derecho
Preparing applications that use Cray-MPICH MPI for profiling
Using DDT or MAP via a Remote Connection
Client interface setup
Running a script

Performance Reports

Preparing your code on Derecho
For compiled codes (e.g., Fortran/C/C++), you will need to add debug symbols to the binary to allow DDT and MAP to sample the program during
execution. However, you do not need to add these symbols when using Performance Reports.

 Use the CPU code: -g option when you compile your code before debugging or profiling.

 Include both the CUDA code: -g and -G options for the NVIDIA compilers to debug GPU code.

Do not move or remove the source code, binary, or executable files from the directory or directories in which you compiled them.

Preparing applications that use Cray-MPICH MPI for profiling

A limitation currently exists in Cray's Common Tools Interface which prevents of the MPI sampling library at profiling time. This limitation preloading
means that any profiling done on codes that use Cray-MPICH MPI with will require manual creation of the either MAP or Performance Reports
sampler library and linking of this library into your application executable. For example, let's suppose you wish to sample a simple MPI model called cf

. Here is how you would need to link the executable:d.exe

First, create the sampler library
module load linaro-forge
make-profiler-libraries --platform=cray --lib-type=shared

Now, link sampler library into executable
mpicc -L$(PWD) -lmap-sampler-pmpi -lmap-sampler -Wl,--eh-frame-hdr -Wl,-rpath=$(PWD) -o cfd.exe main.o
driver.o physics.o

These extra linking steps can be challenging to incorporate into some custom build systems. In this case, you can leverage flags supported by the nca
 wrapper to avoid injecting the necessary flags manually. For example:rcompilers

First, create the sampler library
module load linaro-forge ncarcompilers
make-profiler-libraries --platform=cray --lib-type=shared

While building the application, link the sampler using the NCAR wrapper (bash syntax)
NCAR_LDFLAGS_FORGE=$PWD NCAR_LIBS_FORGE="-lmap-sampler-pmpi -lmap-sampler -Wl,--eh-frame-hdr" ./build.sh

Using DDT or MAP via a Remote Connection

Note

These tools were formerly known as Arm Forge (and Allinea Forge before that). Modules for versions before 23.0 will be found under the old arm-
 name.forge

https://docs.linaroforge.com/23.0/html/forge/index.html

Both DDT and MAP feature complex graphical user interfaces (GUIs) that perform best when run on your local machine. To support this workflow,
these tools provide a "remote-connect" option that allows your application to run on the remote system (e.g., Derecho) while the GUI runs on your
workstation. (The tools also run from your command line interface).

Client interface setup

The client software version that you use locally and the server version that you use on Derecho must be the same. We recommend using the latest
version available. Run to identify the latest version.module -forgeav linaro

Procedure

Download the client software from the Linaro site.

Install and start the client on your local machine.

From the "Remote Launch" menu (see image), select .Configure

Configure as shown in the following image. The configuration will apply to both DDT and MAP, so you only need to do it once.

Enter your followed by and the connection name (, for example) in the “Host Name” field. username @ derecho.hpc.ucar.edu

Then, fill in the “Remote Installation Directory” field. Once you have loaded the module, you can get the installation directory by echoing linaro-forge
the following variable:

echo $NCAR_ROOT_LINARO_FORGE

Click . OK

https://www.linaroforge.com/downloadForge/

Running a script

Prepare a job script. Specify the "main" queue on Derecho and customize the script with your own project code, job name, and so on.submission

On the last line of your script, use (or) instead of mpiexec.ddt --connect map --connect

ddt --connect ./my_executable

Submit your job when indicated below.

Procedure

Start the client interface on your local machine.

From the "Remote Launch" menu, select the name of the host configuration you created in the previous step.

When the following dialog box appears, authenticate as usual. (It may be necessary to click to see the authentication window).Show Terminal

After you log in, return to your normal terminal window and load the modules you need. (We recommend including commands in your module load
job scripts).

module load linaro-forge/23.0

To debug GPU jobs, you may need to set the environment variable CUDA_DEBUGGER_SOFTWARE_PREEMPTION to 1.

export CUDA_DEBUGGER_SOFTWARE_PREEMPTION=1

Submit your job script on your command line as in this example:

qsub my-debug-script.bash

When your job starts, the GUI will show that a “Reverse Connect Request” has been made. Accept the request to continue.

A “Run” window will open and display settings imported from your job script. Review the settings. If your program uses Cray MPICH, make sure the
MPI is specified as Cray PALS where shown in the following image.

After reviewing the settings, click and t Run he DDT or MAP window will open.

Quit when you’re finished so the license is available to other users.

Performance Reports

Performance Reports is another profiling tool provided by Linaro Forge. It summarizes the performance, memory usage, I/O, and more of application
runs.

To generate a performance report, submit a batch job which runs your application prepended by the command (there is no remote perf-report
connection mode). You do not need to compile your application with the -g debug option first.

Modify your batch script to load the linaro-forge module that you want to use and include perf-report as shown in the sample scripts below.

When your job runs, the output will include both text and HTML report files.

For additional information, see the .Linaro Forge product documentation

Sample bash script

#!/bin/bash
#PBS -N pr-job
#PBS -A project_code
#PBS -l walltime=01:00:00
#PBS -q main
#PBS -j oe
#PBS -l select=2:ncpus=128:mpiprocs=128

module load linaro-forge/23.0

export TMPDIR=$SCRATCH/temp
mkdir -p $TMPDIR

Run the executable
perf-report --mpi -n 256 ./executable_name.exe

https://docs.linaroforge.com/23.0/html/forge/index.html

	Debugging and profiling with Forge tools on Derecho

