
Lustre scratch file system
The Derecho scratch file system is a Lustre-based product configured as shown in the table below. An Cray ClusterStor E1000  open-source, parallel  
system, Lustre will be familiar to users of similar POSIX-compliant file systems. This documentation provides a high-level overview of important Lustre 
concepts and terminology to help users achieve optimal performance.

Page contents

Terminology
Metadata and data
File striping
Progressive file layouts
inodes and data blocks

Best practices
Manage your file count and file volume
Avoid unnecessary metadata requests
Prefer Lustre-specific lfs find command

Examples, tools, tips, tricks
Using df and lfs df to query file system status
Using lfs find to change directory tree ownership or permissions
Using lfs find to tar a directory tree
Using lfs find --lazy to efficiently locate old, large files

More resources

Capacity and components
Total capacity of the system is 40 TB of metadata and 60 PB of data.

Component Quantity Details

Metadata servers 
(MDS)

4 Each MDS has two 200 GbE CX6 Cassini network interfaces configured in an active/passive failover pair.

Metadata targets 
(MDT)

4 Each metadata server has a single 12 TB MDT composed of 11 drives in a RAID-10 configuration formatted with 
(~40 TB usable metadata across the entire file system).ldiskfs 

Object storage 
servers (OSS)

24 Each OSS has a single 200 GbE CX6 Cassini network interface.

Object storage 
targets (OST)

96 Each OSS has four 582 TB OSTs. Each OST is composed of 53 drives in a GridRAID configuration formatted 
with (~60PB usable data across the entire file system).ldiskfs   

Terminology

Metadata and data

The notion of file metadata and data as related but separable entities is important to understanding Lustre because it is fundamental to the system's 
parallelization strategy. In a POSIX file system, the describes information about a file (name, permissions, access controls, timestamps, and  metadata 
so on), and the contains the contents of the file itself. data 

Lustre employs one or more  (MDS) to store the metadata and data layout of each file, and several (OSS) to  metadata servers  object storage servers 
hold the file contents.

Each MDS has one or more (MDT), which are storage devices attached to the MDS. Similarly, each OSS has one or more metadata targets   object 
(OST) storage devices. Typically, the MDTs and OSTs are accessible from two different servers, providing fault tolerance and failover storage target 

capabilities. A typical Lustre file system is shown in Figure 1 below.

https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-clusterstor-e1000-storage-systems/p/1012842049


Figure 1: Sample Lustre file system: 4 metadata servers (MDS), 4 object storage servers (OSS). Credit:  .iIntroduction to Lustre Wik

A file system may employ several metadata servers for scalability and load balancing, and several object storage servers for capacity and 
performance scalability. When a user creates a file on a Lustre file system, it communicates with an MDS that is responsible for managing the 
metadata of the file. The MDS also holds the file's , which is a template used to map file contents (conceptually, data blocks) onto one or  striping layout
more OSTs.

This is important to understand because when users are interacting with a Lustre file, they are really interfacing with several storage servers. Different 
file operations require different server communication requirements. For example, querying a file's modification time is a metadata-only operation and 
thus requires communication only with the MDS, whereas querying a file's size involves each OSS over which the file is striped.

File striping

File striping is a key feature of Lustre file systems. A file is said to be striped when its sequence of bytes is separated into small chunks, or , so  stripes
that read and write operations can involve multiple OSTs concurrently. This process is illustrated in Figures 2 and 3. In Figure 2, the sample file is split 
into five stripes: the first four are the same size while the fifth is smaller and contains the "remainder" of the file. This introduces an important striping 
concept: the .stripe size 

Figure 2: Logical view of a file, broken into five "stripe" segments. The first four are the same size while the fifth is smaller and contains the 
"remainder" of the file. Credit: . Lustre User Guide

Figure 3 shows how the stripes can be mapped onto several OSTs as defined by the . In this example, the stripe count is four and the  stripe count
stripe segments are assigned in a round-robin fashion.

https://wiki.lustre.org/Introduction_to_Lustre
https://oit.utk.edu/hpsc/isaac-open/lustre-user-guide/


Figure 3: Physical view of a file broken into five stripes across four OST devices. Credit:  .Lustre User Guide

Striping has important benefits as well as some drawbacks. Striping over more OSTs allows for more bandwidth. In general, as more OSTs are used, 
more servers are involved, so more network and disk subsystem bandwidth is available. Striping also allows for files larger than any single OST. The 
primary drawback of striping is overhead: as more OSTs are employed to store a file, more network overhead is required to orchestrate the 
components.

The preceding discussion is focused on striping the blocks of a given file. When multiple MDTs are present in the file system, as is the case with 
Derecho, metadata striping is also typically employed and the contents of directories are spread across the available MDSs in the system.

Progressive file layouts

The configurable and parameters were at one time the only modifiable parameters available to govern striping behavior, which  stripe size   stripe count 
made it difficult to implement a one-size-fits-all default configuration on large systems with varied use cases. The introduction of progressive file 

(PFLs) in modern Lustre versions, however, extended the striping concept to multiple, progressive segments of files, as shown in Figure 4.layouts   

Figure 4: Sample progressive file layout with three components of different stripe patterns. Credit:  .PFL Prototype High Level Design

In Figure 4, a single file is mapped to three separate components, each with a different striping layout. The first component has a stripe size of 1 MB  
with a stripe count of 1, and is 2 MB in total extent. This means the first 2 MB of the file will be striped over only one OST, in two 1-MB chunks.

The second component begins beyond this 2 MB threshold up to 256 MB size. It employs a stripe size of 1 MB but increases the stripe count to four.

Finally, the third and final component begins when the file size exceeds 256 MB. The stripe size increases to 4 MB and the stripe count to 32 OSTs.

PFLs are useful because they define a template that is much more general than a single stripe size/count pair. They allow small files to be striped over 
a small number of OSTs and only incur the overhead of additional OST stripes when the file is sufficiently large to benefit from increased bandwidth. 

inodes and data blocks

When a file system is constructed, the underlying storage device blocks are segregated into two components: and . data blocks   inodes

Data blocks are the most familiar; storing a 1 GB file simply requires a sufficient number of data blocks to hold its contents.

https://oit.utk.edu/hpsc/isaac-open/lustre-user-guide/
https://wiki.lustre.org/PFL_Prototype_High_Level_Design


Inodes, by contrast, are index nodes that hold the metadata associated with a file or directory: ownership, time stamps, striping information, and so 
on. The number of inodes available in a file system is generally fixed and provides a strict limit on the number of files and directories the file system 
can hold.

This is especially important in a Lustre file system. Its capacity is limited by the size and quantity of OSTs, and its file count capacity is also limited by 
the number of inodes available on the MDTs. In an extreme example, it is possible to exhaust the available inodes in a file system before its storage 
capacity by creating many tiny files, so it is important to manage both the overall file system data volume the file count. and 

Best practices

Manage your file count and file volume

Users have quotas for both data volume and file count on the Derecho Lustre file system. The utility is preferred for reporting  gladequota 
comprehensive storage usage across all GLADE file spaces, including Lustre scratch spaces. Additionally, the quota command can be used to  lfs 
query Lustre-specific quota information.

Many simulation codes produce large quantities of small, diagnostic output files that are useful for diagnosing problems but not often referenced for 
successful production runs. Consider removing or tarring such files incrementally in your workflow to manage overall file count.

Avoid unnecessary metadata requests   

From the background provided above, it is clear not all metadata access requests are equal. Querying a file's timestamps is a cheap operation 
requiring communication with the appropriate MDT, whereas querying a file's size requires communication with each and every OST holding data 
stripes. Therefore, it is a best practice to be aware of these performance implications and request only the metadata needed for a given operation.

For example, especially when in a large directory with hundreds of files, avoid typing  if a simple will do. The former will communicate with every  ls -l  ls 
MDS and OSS in the file system in order to determine the current file size, while the latter is simply an MDS communication. Unnecessary 
communication can make the file system feel slower to you and other users. When file size is required, limit the request to the file(s) of interest when 
practical.

Finally, Lustre provides the notion of a "lazy" file size that can be useful in circumstances where approximation is appropriate, for example finding the 
largest or smallest files in a directory tree. See examples below.

Similarly, avoid excessive file status calls when possible. When repeatedly checking a file's status in a script – inside a loop for example – consider 
adding a command as a preventive measure. This will prevent flooding the MDS with status requests when your loop executes very quickly.  sleep 

Prefer Lustre-specific commandlfs find   

Lustre's is an optimized implementation of the familiar command. It will request only the data required to perform the specified action, and  lfs find   find 
so should be preferred whenever possible. See the examples and use cases below.

Examples, tools, tips, tricks

Using df and lfs df to query file system status 

Use the familiar utility to query overall file system capacity. For example, shows the of a file system in a human-readable format: df   df -h   data size 

df -h /glade/gust/scratch
 
Filesystem                            Size  Used Avail Use% Mounted on
10.13.64.3@tcp:10.13.64.4@tcp:/gusc1  1.2P   35T  1.1P   4% /glade/gust/scratch

Use to get the corresponding information: df -ih   metadata 

df -ih /glade/gust/scratch
 
Filesystem                           Inodes IUsed IFree IUse% Mounted on
10.13.64.3@tcp:10.13.64.4@tcp:/gusc1   1.2G   19M  1.2G    2% /glade/gust/scratch

In the example, the file system overall capacity is 1.2 PB, of which 35 TB is used. The file system has 1.2 billion inodes, 19 million of which are used, 
providing an additional limit on the total number of files and directories that can be stored.



Running  provides similar information but at the Lustre-aware component level. For example, shows the data size broken down by MDS lfs df   lfs df -h 
and OST components:

lfs df -h /glade/gust/scratch
 
UUID                       bytes        Used   Available Use% Mounted on
gusc1-MDT0000_UUID         11.8T       12.6G       11.6T   1% /glade/gust/scratch[MDT:0]
gusc1-MDT0001_UUID         11.8T       12.7G       11.6T   1% /glade/gust/scratch[MDT:1]
gusc1-OST0000_UUID        581.4T       17.3T      558.2T   4% /glade/gust/scratch[OST:0]
gusc1-OST0001_UUID        581.4T       17.3T      558.2T   4% /glade/gust/scratch[OST:1]
 
filesystem_summary:         1.1P       34.6T        1.1P   4% /glade/gust/scratch

This sample file system is composed of two MDTs and two OSTs, and lfs df shows the data size of each component. Administrators typically monitor 
this information to ensure overall file system health, but it can provide useful user diagnostics as well. If one or more of the OSTs is temporarily 
unavailable due to a storage server issue, for example, lfs df will hang at the affected component, indicating the file system is not healthy. Using lfs 
dh -ih works similarly, showing the per-component inode usage. Because Lustre file systems typically have a smaller number of MDTs than OSTs, the 
per-MDT inode usage is an important bound on the overall file system file/directory count capacity.

Using lfs find to change directory tree ownership or permissions

Tools such as , , and provide a recursive option to allow easy application to all the contents of a given directory. Best practice is  chown  chgrp  chmod 
to and invoke the desired action through instead. avoid such features  lfs find   

For example, if you want to change the group ownership of an entire directory tree, you might run a command similar to chgrp -R <newgroup>  
. However, you can do it more efficiently – albeit more verbosely – with as follows:<dirname>  lfs find 

lfs find <dirname> -print0 | xargs -0 chgrp <newgroup>

To be UNIX-specific about the preceding command, it first asks lfs find to list all the contents of a directory and print them separated with a NULL 
character ('\0'). This list is then sent to the command xargs, which is told to expect a NULL-separated list with the -0 flag. Then xargs will run the 
command chgrp <newgroup> on batches of files and split what could be a long list of files into small enough chunks to comply with UNIX's maximum 
command line argument restrictions. See man lfs-find and man xargs for additional details and examples.

Using lfs find to tar a directory tree

This example shows how to create a tar archive file from a specified directory tree efficiently:

lfs find <dirname> -print0 | tar --create --acls --no-recursion --verbose --index-file=my_archive.idx --tape-
length=1G --file=my_archive-{0000..9999}.tar --null -T -

First, lfs find will list all contents of the directory, NULL separated. Then tar will operate on the list of files and subdirectories. Its behavior is modified 
by the following flags:

--create – Create a tar archive.
--acls – Include any file/subdirectory access control lists (ACLs) encountered in the output tar files. This option is necessary to preserve ACL 
information when unpacking the archives later.
--no-recursion – List everything in the directory: files, links, subdirectories, etc. By default will recurse into any directory name it  tar 
encounters, so tells it not to do so, since the contents will be listed anyway. Combined with , this allows you to properly  --no-recursion   --acls
set ACLs on directories.
--verbose – Print each file/subdirectory as it is processed.
--index-file=my_archive.idx – Redirect the list created by into a file named . --verbose   my_archive.idx
--tape-length=1G --file=my_archive-{0000..9999}.tar – This instructs to create a series of files – , tar   my_archive-0000.tar  my_archive-0001.

, and so on – in which each file is no larger than 1 GB.tar
--null -T - – This tells that the input file list is NULL-separated and coming in on standard input. tar 

The process creates several tar files but does not modify the original source tree directory. One consequence is that storage volume increases during 
this process until the user removes the directory. An alternative to consider carefully is to also use the option. It will remove each  --remove-files 
source file after it is successfully added to the tar archive, so the overall storage requirements should remain flat. This is just one example of many 
possibilities with this approach. See man and for more ideas. lfs-find   man tar 

Using lfs find --lazy to efficiently locate old, large files

Determining the precise size of a file on a Lustre system is generally an expensive operation in that it requires communication with every object 
storage server that stores segments of the file. In some cases, knowing the approximate file size may be sufficient, and it can be obtained solely from 
the metadata server(s). For example, to locate all files in a directory modified seven or more days ago that are approximately 10 MB or larger, run:



lfs find <dirname> --lazy --size +10M --mtime +7 -type f -print

The --lazy flag requests the approximate file size instead of requiring the precise size and the associated communication overhead. That approach 
can be useful for quickly locating files to clean up and recover quota space. It could also be combined with xargs and rm to remove the files, similar to 
the chgrp example.

More resources

Introduction to Lustre
lustre.org

 Oak Ridge Leadership Computing Facility Lustre 101 resources

https://wiki.lustre.org/Introduction_to_Lustre
https://www.lustre.org/
https://lustre.ornl.gov/lustre101-courses/

	Lustre scratch file system

